
CS273P Homework #3
Machine Learning & Data Mining: Spring 2018

Due: Thursday May 10th, 2018

Write neatly (or type) and show all your work!

Download the provided Homework 3 code, and replace last week's code (several new elements
have been added, and others modi�ed).

Problem 1: Perceptrons and Logistic Regression (80 pts)

In this problem, we'll build a logistic regression classi�er and train it on separable and non-separable
data. Since it will be specialized to binary classi�cation, I've named the class logisticClassify2.

We'll start by building two binary classi�cation problems, one separable and the other not:

iris = np.genfromtxt("data/iris.txt",delimiter=None)
X, Y = iris[:,0:2], iris[:,-1] # get first two features & target
X,Y = ml.shuffleData(X,Y) # reorder randomly (important later)
X,_ = rescale(X) # works much better on rescaled data

XA, YA = X[Y<2,:], Y[Y<2] # get class 0 vs 1
XB, YB = X[Y>0,:], Y[Y>0] # get class 1 vs 2

For this problem, we are focused on the learning algorithm, rather than performance � so, we will
not bother creating training and validation splits; just use all your data for training.

Note: The code uses numpy's permute to iterate over data randomly; should avoid issues due
to the default order of the data (by class). Similarly, rescaling and centering the data may help
speed up convergence as well.

(a) (5pts) Show the two classes in a scatter plot (one for each data set) and verify that one data
set is linearly separable while the other is not.

(b) (10pts) Write (�ll in) the function plotBoundary(...) in logisticClassify2.py to com-
pute the points on the decision boundary. This will plot the data & boundary quickly, which
is useful for visualizing the model during training. To demo your function plot the decision
boundary corresponding to the classi�er

sign( .5 + 1x1 − .25x2 )

along with the A data, and again with the B data. (These �xed parameters will look like an
OK classi�er on one data set, but a poor classi�er on the other.) You can create a �blank�
learner and set the weights by:

import mltools as ml
from logisiticClassify2 import *

learner = logisticClassify2(); # create "blank" learner
learner.classes = np.unique(YA) # define class labels using YA or YB
wts = np.array([theta0,theta1,theta2]); # TODO: fill in values
learner.theta = wts; # set the learner's parameters
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(c) (10pts) Complete the logisticClassify2.predict function to make predictions for your
linear classi�er. Note that, in my code, the two classes are stored in the variable self.classes,
with the �rst entry being the �negative� class (or class 0), and the second entry being the �pos-
itive� class. Again, verify that your function works by computing & reporting the error rate
of the classi�er in the previous part on both data sets A and B. (The error rate on data set A
should be ≈ 0.0505, and higher on set B.)

(d) (5pts) Verify that your predict code matches your boundary plot by using plotClassify2D
with your manually constructed learner on the two data sets. This will call "predict" on a
dense grid of points, and you should �nd that the resulting decision boundary matches the
one you computed analytically.

(e) (10pts) In my provided code, I �rst transform the classes in the data Y into Y 01, with canonical
labels for the two classes: �class 0� (negative) and �class 1� (positive). In our notation, let
z = x(j) · θT is the linear response of the perceptron, and σ is the standard logistic function

σ(z) =
(
1 + exp(−z)

)−1
.

The logistic negative log likelihood loss for a single data point j is then

Jj(θ) = −y(j) log σ(x(j)θT ) − (1− y(j)) log(1− σ(x(j)θT ))

where y(j) is either 0 or 1. Derive the gradient of the negative log likelihood Jj for logistic
regression, and give it in your report. (You will need this in your gradient descent code for
the next part.)

(f) (15pts) Complete your train(...) function to perform stochastic gradient descent on the
logistic loss function. This will require that you �ll in:
(1) computing the surrogate loss function at each epoch (J = 1

m

∑
Jj , from the previous

part);
(2) computing the prediction and gradient associated with each data point x(j), y(j);
(3) a stopping criterion (usually either stopEpochs epochs or that J has not changed by more
than stopTol since the last epoch (here meaning, pass through all the data).
Note on plotting: The code generates plots as the algorithm runs, so you can see its behavior
over time; this is done with pyplot.draw(). Run your code either interactively or as a script
to see these display over time; unfortunately it does not work easily in Jupyter (you will only
see a plot at the end, which is di�cult to use for diagnostics.

(g) (10pts) Run your logistic regression classi�er on both data sets (A and B). Describe your
parameter choices (stepsize, etc.) and show a plot showing the convergence of the surrogate
loss and error rate (e.g., the loss values as a function of epoch during gradient descent), and a
plot showing the �nal converged classi�er with the data (using e.g. plotClassify2D). In your
report, please also include a listing of any functions that you wrote (at minimum, train(),
but possibly a few small helper functions as well).

(h) (15pts) Add an L2 regularization term (+α
∑

i θ
2
i ) to your surrogate loss function, and update

the gradient and your code to re�ect this addition. Try re-running your learner with some
regularization (e.g. α = 2) and see how di�erent the resulting parameters are. Find a value
of α that gives noticeably di�erent results & explain them.
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Note: Debugging machine learning algorithms can be quite challenging, since the results of
the algorithm are highly data-dependent, and often somewhat randomized (initialization, etc.). I
suggest starting with an extremely small step size and verifying both that the learner's prediction
evolves slowly in the correct direction, and that the objective function J decreases monotonically. If
that works, go to larger step sizes to observe the behavior. I often manually step through the code �
for example by pausing after each parameter update using raw_input() (Python 2.7) or input()
(Python 3) � so that I can examine its behavior. You can also (of course) use a more sophisticated
debugger.

Problem 2: Shattering and VC Dimension (20 pts)

Consider the following learners and data points, which have two real-valued features x1, x2. Which of
the following four examples can be shattered by each learner? Give a brief explanation / justi�cation
and use your results to guess the VC dimension of the classi�er. (You do not have to give a formal
proof, just your reasoning.)
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(a) (b) (c) (d)
For the two learners, T [z] is the sign threshold function, T [z] = +1 for z ≥ 0 and T [z] = −1 for

z < 0. The learner parameters a, b, c are real-valued scalars, and each data point has two real-valued
input features x1, x2.

(a) T ( a+ bx1 )

(b) T ( (x1 − a)2 + (x2 − b)2 + c )

(c) T ( (a ∗ b)x1 + (c/a)x2 )

(d) T ( a+ b ∗ x1 + c ∗ x2 ) · T ( d+ b ∗ x1 + c ∗ x2 )
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